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SUMMARY 

The resolution of overlapping peaks depends on the time available for pro- 
cessing the original data. Owing to the high demands on time, complex algorithms 
cannot be used for the resolution of peaks from a chromatograph used as a control 
unit of a chemical reactor, where a rapid response is essential. On the other hand, 
these complex algorithms can be used for analytical purposes when the evaluation 
time is unimportant. The Gaussian model of a peak and its simplification, enabling 
a proper description of a peak to be made, are discussed together with an iterative 
algorithm for the calculation of parameters. The iterative algorithm utilizes the pos- 
sibility of determining parameters relating to a certain peak separately and so de- 
creases time and memory requirements. 

INTRODUCTION 

The control of chemical processes using chromatographs is sometimes 
hindered by problems connected with the physico-chemical separation of the com- 
ponents of the mixture being analysed. Under laboratory conditions there are diffi- 
culties resulting from the low accuracy of direct integrating devices, especially when 
there are overlapping peaks. Such cases require the use of a computer in the mea- 
suring sequence or with the controller. In such a way quantitative parameters for 
controls can be obtained by indirect numerical separation of peaks. A retention curve 
is usually represented by a time series of digitized deviations from the zero signal of 
the detector. 

Our attempts to resolve indirectly overlapping peaks using mathematical 
methods’s* suggested that the method offers further possibilities. Similar conclusions 
were drawn by other workers3+. The key factor, however, is the choice of the math- 
ematical model and the choice of the starting parameters. We tested the method on 
standard mixtures, the composition of which was determined by weighing of the pure 
components*. The problems could be described by a probability peak model of the 
Gauss type and of other forms of retention curves are approximated by a final series 
similarly as in ref. 5. The increase in the number of parameters led to ambiguity in 
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the approximations and subsequently to modification of programs used. We have 
therefore tried to describe the theoretical considerations involved. 

THEORY 

Real retention curves can be approximated by a series of mathematical models 
characterized by parameter vectors, the only independent variable being time. The 
separation algorithm should find parameters that ensure a minimum of the chosen 
objective function. In our case, variance was used as an objective function and was 
calculated as the sum of the squares of the deviation of the model from experimental 
values at chosen time intervals. The whole procedure belomgs to the class of opti- 
mization problems, where it is usually stated that the result depends on the first guess 
of the parameter vector. Let us first solve the question of how many minima can 
exhibit an objective function and what the probability that the found estimates are 
optimal is. We can utilize distinguishing features that characterize a separated peak, 
namely the continuity of the time function and the possibility of assignment of auton- 
omous subsets of parameters. The set of parameters of the mathematical model can 
be represented by the vector B: 

B= B(B1, Bz, B3, . . . . 4, . . . . B(L-l), &) (1) 

Assigning groups of components Bl to individual peaks means transformation of 
vector B to matrix B with elements B,, where the row index denotes the serial peak 
number and the column index serial number of the parameter of an elementary peak: 

/&I, B12, 43, . . . . bn 1 

B= 
B21, 822, B23, . . . . B 2m 

. . . . . . . 

&l, &2, 43, . . . . &m 

The mathematical model of the retention curve can thus be written as a linear su- 
perposition of elementary mathematical models of separated peaks: 

S = PI(BII, B12, . . . . &,d) + P2@21, B22, . . . . B2mO + . . . + 

PI(NI~, Bi2, a**, &m t) + *.* + pn(&l, &29 ***, &mvt) 

For example, for a Gauss-type model the ith peak can be written as 

(3) 

PI = p11 expI-(2 - &)2/B&l (4) 

and the subset of parameters has three elements. Similarly, we adopt the idea that 
the retention curve can be divided into sub-curves E&), assuming the validity of 

Q) = E&r) + E2O.J + .** + J%OJ (5) 

A real objective function in real time can be considered as discrete and non-normal- 
ized (by the number of sampling points of the time series): 
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OF = f[S(t,) - E(fk)12 (6) 

Using eqns. 3 and 5, the last relationship can be rewritten as 

OF = t;‘[Pl(..., tk) - &(tk)12 + 5[p2(..., tk) - E2(tk)12 + *** 

+ p..., fk) - ,?&(tk)]2 + . . . + z[p,( . . . . tk) - En(h)]’ + R (7) 
k 

The term R incorporates all mixed members of series expansion 6. Expansion 7 has 
n + 1 members, which can equal zero, and in this way the objective function can 
have local minima. By binomial expansion of (1 + ly’, it can be easily shown that 

(“ii) + (“:I) + . . . + (“:I) + . . . + (;::) = 2”+i - 1 (8) 

The number of local minima can therefore increase according to 

n=2 3 4 5 6 7 8 9 10 

(9) 
m = 7 15 31 63 127 255 511 1023 2047 

or, when we do not expect a minimum of the member R, the sequence m begins with 
3. In any case, the probability of finding a global minimum decrease exponentially 
with n. 

If we ensure autonomous variations of the parameters of the mathematical 
model in groups, then the complexity of the model of the peak is not significant. 
Treatment of subsets of parameters is described in the next section. 

Assignment 9 also describes the ambiguity of the results of optimization 
routines, which is often encountered in practice. 

In the design of the mathematical model of separated peaks we started from 
a probability assumption of the Gauss type: 

Y = y0exp(-x2/2) 

which corresponds to physico-chemical interaction of the following component, and 
other effects will be described by higher derivatives of eqn. 10. 

Let us choose in this connection a model of a chosen normalized peak as a 
differential equation with constant coefficients: 

u&v(“) + a(,-&“-‘) + . . . + a# + a($J = f(x) (11) 

Linear multipliers ai represent functions 10 and their derivation in the function f(x). 
Integration or numerical solution of eqn. 11 will be performed by elementary prop- 
erties of eqn. 10. The first and the second derivatives can be rewritten into a set of 
equations: 
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Y = POWY 

Y (l) = Pl(XlY 

Y G?) = Pz(XlY (12) 

Y (k) = &)y 

where the functional multipliers&) are linear polynomial of the kth order for which 
the following recurring relationship is valid: 

Pk(X) = #l) 6) - x P(k-1) (x) (13) 

For example, 

PO(X) = 1 
P&d = --x 

p2(x) = x2 - 1 
-x3 + 3x 

(14) 
P36) = 

pb(x) = x4 - 6x2 + 3 

If any equation in the set 12 is integrated, then the primary function of the integral 
is defined by eqns. 14. 

Multiplying assignment 13 by the exponential function 10, represented by y, 
we obtain 

Pkfx)Y = [Pl:’ l)(x) - x ?+k - 1) h)b (15) 

which is a limited integral of derivative y (k+l). It was determined, e.g., by separation 
of variables: 

m 

s y@+‘)dx = lim bk(x) yj$ (16) *+m 
-* 

If the order of the polynomial k is even, then the even function on the right-hand 
side of eqn. 16 is of the form 

Pk( - a)Y( -a) = Pk(d Y(a) (17) 

and integral 16 converges to zero regardless of the magnitude of its limits. In the case 
of odd k, the type of function 16 is given by the polynomial pk(x): 

Pk(-d Y(--a) = -Pk@) Y(u) (18) 

and integral 16 can be transformed to 
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s y”+ ‘)dx = lim 2@,(u) y]: (19) o+oo 

the resulting value of which need not be defined. However, taking into account the 
properties of the exponential function y we are in fact solving extrinsic limits of 
functions of an exponential class where the right-hand side of eqn. 19 can be trans- 
formed to eqn. 20 by expansion of the exponential function from eqn. 10: 

m 

s y”+l)dx=~+~ 

a,&? + a(,‘-1) 2-1 + . . . + alx + a0 

b +bX2+bX4+ (20) 
0 1 2 + bgc2k + . . . 

> 

X=8 . . . 

Taking into account the first h members from an unlimited expansion in the denom- 
inator, where 2 h is greater than k, the limit of integral 16 is also zero. It is evident 
from this procedure that the only non-zero integral is assigned to the nominal func- 

tion 10 and equals 427~~7,. If we are able by a numerical procedure to identify the 
nominal function y from the total function F(x), then its integral represents the area 
of the following peak. In real conditions the formal distortion of a peak is then 
explained by the effects of process dynamics and is described by higher derivatives 
of the model used. This is valid for deviations of peak heights, retention times, com- 
ponent interactions and others. Non-linear regression analysis of statistical data sets 
leads to the estimation of at least three parameters for one peak. Other parameters 
describing distortions by higher derivatives and zero drifts increase the time of analy- 
sis and this also increase the period of the control or measuring cycle. The suggested 
method of indirect identification of overlapping peaks by a mathematical model re- 
quires k + 3 parameters per peak. The value of k is the order of the differential 
equation representing the mathematical model of the peak and the number of the 
nuissance parameter for its quantification. 

TREATMENT OF PARAMETERS 

Effects of acceleration and retardation forces as components of the probability 
description of a separated peak are incorporated into a physico-chemical interpre- 
tation of the model used (eqn. 11) and are proportional to the first and second time 
changes of the response defining the curve: 

i (UOiPOi + UliPli + a2@2i)_Yi A E(X) (21) 

i=l 

Using the equation 

Xi = (t - Bil)lBia (22) 

we can transform independently variable coordinates of the ith peak to real time. In 
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_ 
parameter Bi3 the effect of constant 42 is incorporated. From eqn. 21 it thus follows 
that 

I c[ $ (t - Bi*)2 - $ (t - Bi2) + (Uoi - U2i) - 
i=l i3 1 

(23) 

Bir exp[-(t - Bi2)2/Bfs] A E(t) 

The value of n determines the number of peaks in a time expansion of studied elution 
curve E(t). A value of unity can be assigned to Qei without any loss of generality. The 
area of a Gauss-type peak is proportional to BilBij, the proportionality constant _ 
being Jx. Using the procedure shown in relationship 2 the multipliers ali, a2i are 
called Bid and Bi5. The number of columns of the matrix B is fixed at 5 and the 
number of rows equals to number of overlapping peaks. Non-linear regression 
methods, in which some of the parameters are in mutual products or quotients, 
exhibit convergence problems. However, in our case we have left the model in the 
form of eqn. 23 as we can easily guess likely values of Bhi and Bsi. Let us now suppose 
that the optimization algorithm has found a local minimum of the objective function 
OF. We can suggest a suitable identification subroutine that can check whether the 
minimum is global in a given parameter space. 

Let us denote the second column of matrix B as a critical one. We shall in- 
vestigate the parametric sensitivity of objective function 6 to variation of nearly in- 
dependent parameters Bi2, which define the relative tops of Gauss-type peaks on the 
time axis. Let us choose the sequence 

(6) = {.eey Bi2 - 24812, Bi2 - ABi2, Bi2, Bi2 + ABi2, Bi2 + 2ABi2, .*a> 

where ABi2 is a suitably chosen step, e.g., Bi,/lO. 

(24) 

To any element of sequence 24 is assigned a value of the objective function 
‘OFi: 

(OFi} = (.eagp20Fip - ‘OFi, ‘OFi, ‘OFi, ‘OFi, ..a} (25) 

We can expect that the monotonous sequence 25 will correspond to the situation 
when our algorithm did not fit the ith peak into the neighbourhood of the relative 
minimum OF. If there is a value of OOF, in the sequence that is very small, then we 
can expect that the model of the ith peak will have parameters that are close to the 
optimum. A decision algorithm is chosen so that it examines signs of differences of 
elements 25. If a sign change is recorded, then the ith row is not subjected to opti- 
mization 

B= 

&I, &2, Bl3, &4, &5 

B21, B22, B23, B24, B25 

(26) 
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If all rows of matrix B are fixed, then the calculation is terminated, or matrix C is 
considered as a new guess of the parameters and iteration proceeds. 

The procedure outlined can be realized by elementary routines, but it is suitable 
to incorporate a strategy ensuring termination of the calculation at the moment when 
the accuracy of the result is better than 1%. 

In order to estimate the computer time required, we consider that in the most 
favourite case the transformation of matrix B to C needs n cycles. The modified 
program SECOND from an earlier paper2 is shown in Fig. 1. To demonstrate the 
properties of the mathematical model used for a separated peak, a Gauss-type peak 
and its first and second derivatives are shown in Fig. 2. 

It is evident that the initial guesses of Bib and Bi5 must take into account their 
effect on the expected superposed time dependence of the ith component &(t). They 
were not greater than O.lBil. Non-Gaussian peaks should be corrected much more 
strongly. As an example of the suggested method we have performed a numerical 
separation of the mixture described previously2, which exhibited the greatest devia- 

ENTRY OF 

“THIRD” 

I 

VARIATION OF 

THE PEAK AREA 

OF PARAMETERS 

Fig. 1. Modified program SECOND. 
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Fig. 2. Gauss-type peak with two components of its derivatives. -, Experimental peak; ------, fitted 
peak. 1, Negative component of the first-order derivative; 2, positive component of the second-order 
derivative. Coordinates are experessed on a relative scale. 

tions from the expected values found by weighing. The comparison in Table I shows 
a significant improvement. The elution curve is shown in Fig. 3. 

CONCLUSION 

Utilization of numerical methods for resolving overlapping peaks is advanta- 
geous when physico-chemical procedures fail or are too expensive. 

The choice of the mathematical model of a separated peak, which should be 

TABLE I 

COMPARISON OF THEORETICAL AND CALCULATED DATA FOR THE COMPOSITION OF 
THE ANALYSED MIXTURE 

Component Composition (%) 

Theoretical Calculate& 

A A B A 

Ethylbenzene 26.00 25.10 0.9 25.93 0.07 
p-Xylene 51.00 51.68 -0.68 51.05 -0.05 
m-Xylene 23.00 23.22 -0.22 23.02 -0.02 

l A, Results obtained in ref. 2 (mixture A, set 3); B, results obtained in this study; A, difference 
between the actual and calculated amounts of a component. 
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Fig. 3. Chromatogram of mixture A from ref. 2. Peaks: A = ethylbenzene (26.00%, w/w); B = pxylene 
(51.00%, w/w); C = m-xylene (23.00%, w/w). For other comments, see Fig. 2. 

similar in type to the time expansion of the retention curve is important. Starting 
guesses of parameters in the optimization algorithm have to be determined carefully, 
taking into account that neither the height nor the location of a peak is equal to 
coordinates of corresponding points on the retention curve, but they are distorted 
by time dependences of neighbouring peaks. 

Special attention must be paid to the choice of the iteration algorithm. For 
analytical purposes we do not need to take into account the time needed for one 
numerical separation and the algorithm given previously* is suitable. However, when 
a chromatograph is incorporated into the control loop of a technological process the 
computer time is crucial, and simpler algorithms with a rapid response which utilize 
relations among model parameters must be used. We doubt if a general routine exists 
and it seems wiser to develop special routines than to construct a large general 
routine. Any routine, however, should ensure an accuracy of 1%. 
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